Air plasma cutting is reserved for lower-reactivity metals such as stainless steel. However, it requires an electrode made from zirconium or hafnium to reduce oxidative destruction at the arc point.
Plasma cutting was first demonstrated by Dr. Robert Gage at Union Carbide in 1957 as a substitute for oxy-acetylene cutting. Later developments, particularly in the oil industry, allowed plasma cutting to be done underwater.
Shipbuilding, heavy machinery, construction, and military manufacturers all make extensive use of plasma cutting. The technology allows the fast and low-cost processing of large steel, stainless steel, and other metal components.
The advantages of plasma cutting are listed below:
The disadvantages are listed below:
Any conductive material can be cut with plasma, although the technique is rarely used on anything but metals and composites. A particular exception to this rule is semiconductor substrates, which can still accept plasma cutting. Examples of the most common materials are:
Handheld plasma cutters are widely available for as little as $1,000 for a device of moderate capability. CNC plasma cutting systems, on the other hand, go for around US$30-50k for highly capable equipment.
The plasma is formed by an electrical arc running from the cutter electrode to the workpiece. A (usually) inert gas stream confines the energy of the plasma to a small-diameter spot on the target material, immediately melting it. The vapor and melted material are then ejected by the gas stream, which also cools the target. The melt/ejection progresses rapidly through the target thickness in the form of a cut that widens with depth.
Personal safety gear is a must when plasma cutting. Hot splash and irritating dust get ejected violently from the cut. The process is also noisy, as the gas stream and arc are fast and energetic. The safety equipment for plasma cutting is listed below:
General environmental safety gear is also required at most sites. Some examples are:
For more information, see our guide on Safety Gears when using Laser Cutters.
For most applications, the closest alternative process to plasma cutting is laser cutting. The methods are closely related in that they use directed energy to melt/vaporize the target material and a gas or air stream to clear debris. Plasma cutting was developed to replicate and improve on oxy-fuel cutting, a process that is still widely used as a simpler but low-precision alternative. For more information, see our guide on Alternatives to Laser Cutting.
Yes, titanium can be cut with a plasma arc. However, some additional precautions are required:
Yes, a plasma cutter can cut reflective materials. The albedo of the cutting target has no effect on the plasma arc since energy is imparted by ionized atoms rather than photons.
The difference between plasma cutting and CNC plasma cutting lies in the tools involved. Plasma cutting was first developed in the 1950s and 1960s as a hand-torch or simple pass-jig process. The advent of CNC machines in the 1960s and 1970s led to experiments with mounting a torch onto a CNC X-Y transport mechanism, allowing precise control and repeatability without requiring the same level of operator skill. For more information, see our guide on CNC Machining.
This article plasma cutting, explained what it is, and discussed the manufacturing process in detail. To learn more about plasma cutting, contact a Xometry representative.
Xometry provides a wide range of manufacturing capabilities, including plasma cutting and other value-added services for all of your prototyping and production needs. Visit our website to learn more or to request a free, no-obligation quote.
The content appearing on this webpage is for informational purposes only. Xometry makes no representation or warranty of any kind, be it expressed or implied, as to the accuracy, completeness, or validity of the information. Any performance parameters, geometric tolerances, specific design features, quality and types of materials, or processes should not be inferred to represent what will be delivered by third-party suppliers or manufacturers through Xometry’s network. Buyers seeking quotes for parts are responsible for defining the specific requirements for those parts. Please refer to our terms and conditions for more information.
For more information Plasma Arc Welding Torch, please get in touch with us!